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6.0 THE ANALYSIS OF VARIANCE

6.1 One-way Analysis of Variance

We will begin with the simplest case, the one-way analysis of k sets of
observations (the t-test considers k=2). The ANOVA is usually presented as a
table showing the sums of squares, degrees of freedom, mean squares and the
associated F-tests of significance (named for the pioneer worker and
originator of the test, R. A. Fisher, who devised much of the methodology in
the 1920's and 1930's).

The basic calculations depend only on algebraic identities yielding the Sums of
Squares. These hold for any k sets of numbers so there are no assumptions
involved in the basic calculations. We bring in various assumptions in order to
develop statistical tests of significance.

We will subject one set of data (the pheasant count data of Table 6.1) to several
different forms of ANOVA to demonstrate the mechanics of calculations for
various arrangements of data. The assumptions involved in F-tests will be
discussed more fully later, after we examine the basic calculations.

Table 6.1. Pheasant call count data reported by S.M. Carney and G. A. Petrides
Journal of Wildlife Management 21:393, 1957

OBSERVERS
STATIONS A B C D E F

1 39 33 33 32 29 27
2 46 36 32 30 35 35
3 45 36 44 31 31 23
4 15 25 29 18 18 14
5 17 14 14 9 14 7
6 27 24 26 14 20 15
7 24 19 15 13 19 15
8 22 22 22 13 16 13
9 28 35 33 32 26 28
10 26 24 23 26 22 17
11 12 13 5 9 8 8
12 8 11 9 9 12 7
13 6 5 9 4 10 3
14 7 6 7 2 7 6
15 7 11 11 6 10 6
16 9 11 9 6 10 4
17 1 2 4 2 5 0
18 5 4 4 4 6 2
19 3 2 3 1 3 1
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 Fig. 6.1 Counts of calling (crowing) pheasants at 19 stations counted
simultaneously by each of 6 observers.

The short horizontal lines in Fig. 6.1 mark the mean counts for each of the 6
observers. If it is assumed that the data  all come from the same population or
process, then the apparent differences in means arise as a matter of chance.
Then any particular cluster of points will occupy roughly the same position as
any other cluster. On the other hand, if at least some of the populations (or
processes) do have quite different means, then the clusters of plotted points
will not occupy quite the same positions. Three ways in which the clusters of
points can differ are: (1) one or more clusters are shifted up or down from the
others (a "scale" or "location" difference), (2) the spread of the individual
clusters may differ, and (3) the shape of the clusters may differ. Sample
variances provide a measure of the spread of the data, being calculated for the
ni  observations from each observer as:

so that data with a wide spread (scatter) of points will have a large variance. If
the clusters have the same shape (this can't be reliably checked without very
large samples) and spread (same variance), then a simple shift up or down
scale can be detected by comparing the variability of individual clusters with
that of the whole set of data. If the clusters are shifted well apart, obviously an
overall variance will considerably exceed that of the individual clusters.
Offhand, it doesn't look as though the several sets of pheasant data differ
much. Another example, based on natural logarithms of counts of "signs"
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(mounds and dens) of pocket gophers at different locations appears in Fig. 6.2,
which does seem to suggest real differences between sites.
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Fig. 6.2 Logarithms of counts of pocket-gopher signs at different locations
and/or years (Reid, Hansen, and Ward, Jour. Wildl. Manage. 30:330,1966).

A comparison between an overall variance and that of individual comparisons
can be constructed by examining the sum of squares making up the overall
variance. That is, let yij  be the jth observation in the ith column of tables of
data and ni  be the number of observations in that column. Denote the overall

mean by y-   and a column mean by  y-  i . Then the overall variance is written as:

Considering only the numerator of eq. (6.2) (the sum of squares) for the
present, we can rewrite it as:

                           TOTAL S.S.       = WITHIN S.S.  +   BETWEEN  S.S.

This results because a little algebra shows that the cross-product term
vanishes (students should do the algebra for themselves). The first of the two
resulting terms is just the sum of the components that would be used to
calculate a separate variance for each column and is thus denoted the "within"
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(within columns) sum of squares. The second component represents the
variability "between" columns. These quantities are usually displayed in an
Analysis of Variance (ANOVA) table (let Σ ni  = n):

Table  6.2  Analysis of Variance for a one-way design.

                                                              Degrees of      Mean
Source                  Sum of squares                    freedom                                     squares                                

The "mean squares" (MS) are estimates of variances, and under the
hypothesis of no difference between the populations (processes)
represented by the columns of the Figures above, these estimates should be
equal. Arriving at the divisors (degrees of freedom) can be remembered
by the following devices: (1) there are k means being considered in the
"between" groups so the usual practice for estimating a variance prevails,
i.e., divide by k-1, (2) within each group a variance would be
estimated by Eq. (6.1). A logical way to pool these within-group variances is to
weight by the degrees of freedom, i.e., calculate:

which gives the between-groups value used above (Table 6.2).

 Whether the two variance estimates are significantly different or not is tested
by the "F-ratio", which is:

                                            F = 
S Sb/ (k-1)
S Sw/ (n - k )

 

 Values denoting significant deviations are widely tabulated in textbooks in
statistics and are now printed out by the various computer programs used to
calculate ANOVAS. The advent of such computer programs has made it very
easy to do the calculations. The serious disadvantage of these "canned"
programs is that virtually anyone can calculate complex analyses without
having any real idea what the results mean. Students thus need to actually
work out the calculations for the above examples so as to understand how they
are carried out. This is easy to do on a spreadsheet, such as EXCEL.

Inasmuch as EXCEL will conduct one-way ANOVAS, we can first use that
function (Anova: single factor) and then calculate the sums of squares directly

Between groups          k -1              

Within groups        n - k             

Total                               n -1

SSb n y y
SSb

k

SSw y y
SSw

n k

y y

i i
i

ij i
ji

ij
ji

= −
−

= −
−

= −

∑

∑∑

∑∑

( )

( )

( )

2

2

2

1

( )

( )

n s

n

i i
i

i
i

−

−

∑
∑

1

1

2

                                                 (6.5)



6.5

on a separate spreadsheet, as a way to understand what's going on. Thus the
EXCEL one-way program produces a listing of sample sizes, sums, averages and
variances for each column in the table of pheasant call-count data, followed
by an ANOVA table of Sums of Squares, degrees of freedom, mean squares, F
value, P-value (probability of significant difference between groups, and "F-
crit" (the significant value of F at the α  = 0.05 level).

To check these results directly, one needs only to insert two columns between

each of the existing columns of data, calculate column means (y-  i )for the data

and the overall mean (y-  ), and use these to calculate "within" and "total" sums
of squares and add them up to get the values produced by the program. The
"between" sum of squares is calculated directly from the definition given in
Table 6.2 above using column means and overall mean.

6.2 Two-way analysis of variance

One-way ANOVA usually does not involve much in the way of a study
design. The comparisons are likely to be obvious, and the only complication
that may arise is if it is desired to compare subgroups of the k sets of
observations. We will return to such comparisons later on. The "higher-order"
forms of ANOVA are more versatile and thus more powerful. More planning is
thus involved, and we need to distinguish between the various possible
approaches. The simplest of the more complex ANOVA's is the two-way analysis
without replications. As the name suggests, it is based on a two-way table.
There are k sets of data, each appearing in r rows, so that there are rk
observations. The pheasant call-count data provide an example, where we now
consider the rows (stations) as a factor in the analysis. This is done by
calculating a row sum of squares, and incorporating it in the ANOVA table. It is
worthwhile to depict the data as an table of xij with k columns and r rows as
follows (some authors use r rows and c columns; others a rows and b columns -
- notation is not consistent in statistics books). It is useful to border the table

with row and column means. The dot notation (e.g, x-  1.) is used to signify that

the average is taken over a row or a column (x_ .1). A double dot notation (x_ ..) is
used to designate the overall means (sometimes this appears with two bars over
x). Note that we have switched from yij  to xij . Both notations are
common; it is worthwhile to use xij  from now on because yij  will be used as the
"independent" variable in regression analysis later on.
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                                  COLUMN MAIN EFFECT

1 2 3 i k

1 x1 1 x2 1 x31 ...  xj1  .... xk 1 x-  .1

2 x1 2 x2 2 x3 2 xj2 xk 2 x-  .2

ROW EFFECT 3 x1 3 x2 3 x3 3 xj3 xk 3 x-  .3
             .

 .
                                     .

j x1 j x2 j x3 j x i j xk i x-  .i
             .

 .
             .

r x1 r x2 r x3 r x i r xk r x-  .r

x_ 1. x_ 2. x_ 3. x_ i . x_ k. x_ ..

The sums of squares (S.S.) are obtained in the same way as in the previous
example, that is, we expand the Total S.S. to form the other sums of squares:         

Total S.S.             - Columns S.S.       - Rows S.S.           = Residuals (Error) S.S.

These results are calculated by EXCEL as 2-way ANOVA without replication. The
program produces tables of row and column means and variances along with
an ANOVA table.

6.3 Randomized blocks designs

The two-way program is listed in EXCEL as being "without replication".
However, this is not necessarily true, as the row effects can indeed represent
replications. Such an arrangement results from a randomized blocks design.
These designs are widely applicable. Suppose we have k treatments to study,
and can arrange to test them in r "blocks", where each block is comprised of k
units that are relatively uniform in nature. For example, we might want to
evaluate the effectiveness of k drugs on weight gain in rats. We might thus
obtain r litters of k rats each, and give the different drugs to each of the k rats
of each litter (choosing individual rats out of a given litter at random to
receive one of the k drugs), and maintain the individual litters together under
uniform conditions. The trick is to keep the blocks as uniform as possible so as
to minimize "within block" variability so that most of the variance within a
block results from the treatments. The method was developed in agricultural
experimentation where the blocks are usually plots of ground selected for
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their uniformity. Each plot is made up of k subplots, to which some set of, say,
fertilizers, is applied. Fig. 6.3 shows how randomized blocks designs are laid out
in plots. Note that the blocks may be separated by some distance, being selected
for the uniformity of material within a block, which can reduce the "error"
M.S. considerably.

The randomized blocks design can be a powerful and efficient approach.
Note that the individual units in the blocks serve as true replicates so that the
randomized blocks design does have replication. In our pheasant example, the
stations are not replicates, so the ANOVA there is "without replication".
However, the two cases (with and without replication) use the same
calculations. The difference lies in the experimental design -- randomized
blocks may be far more efficient in assessing differences. Much of the
efficiency depends on the investigator's knowledge of the experimental
material -- there is an element of "art" in picking blocks. In long-term studies
one can sometimes take advantage of previous year's data to see how uniform
the blocks are. Also, "uniformity" studies can be run to measure the variability
within blocks. In these studies the same "treatment" (usually no treatment) is
applied to all plots, and the ANOVA run to measure variability within and
between blocks. One would, of course, like to have a very small "within" mean
square, and can tolerate a large "between" blocks M.S.
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A randomized block study design. T here are k units, assigned to a lo cation
at random within each block, and r  blocks in all. Every treatment ap pears
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r

Fig. 6.3 Randomized blocks layout. The blocks (often plots in agricultural
studies) are laid out to be as uniform as possible within individual plots.

6.4 Two-way analysis of variance with replication

The two-way analysis of variance with replication normally appears
with replicates "within cells" in a table of data. We thus need to consider
observations with three subscripts, xi jk , as shown in the table below, which
has 3 replicates per cell. In general, we may have m replicates per cell where
m > 2, and thus rkm observations in the entire table.  
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The calculations for S. S. in the ANOVA table now become somewhat
more complicated, but take on a general form that can be followed in even
more complex cases. The residual S. S. (error term) is always calculated from
the replicates within cells, i.e.,

where  x
-

 ij . is the cell mean (these are not shown in the table below as they are
an average of the m observations in the cell; 3 observations in the table
above). An easy way to remember how to calculate residual (error) mean
squares when there is replication, is to note that the units within a given cell
all get identical treatments, and thus furnish the best estimate of the
underlying variability. Hence the error mean square estimates the underlying
variance of the experimental units. Any other variance estimate (mean
square) may be inflated by treatment effects.

     COLUMN MAIN EFFECT

  1   2   3     i    k
x1 1 1 x2 1 1 x311 ...  xj11.... xk11

1 x1 1 2 x2 1 2 x312 ...  x j12  ...xk12    x
-

 .1.
x1 1 3 x2 1 3 x313 ...  x j13 ... xk 1 3

x1 2 1 x2 2 1 x3 2 1 x i 2 1 xk 2 1

2 x122    x222    x322    x i22     xk22      x
-

 .2.
x1 2 3 x2 2 3 x3 2 3 x i 2 3 xk 2 3

. . . . . .

. . . . . .

. . . . . .

x1j1 x2j1 x3j1 x i j1 xk j1

ROW EFFECT j x1j2 x2j2 x3j2 x i j2 xkj2      x
-

 .j .
x1j3 x2j3 x3j3 x i j3 xk j3

. . . . . .

. . . . . .

. . . . . .

x1 r 1 x2 r 1 x3 r 1 x i r 1 xkr1 

r x1 r 2 x2 r 2 x3 r 2 x i r 2 xkr2    x
-

 .r.
x1 r 3 x2 r 3 x3 r 3 x i r 3 xk r 3

x_ 1.. x_ 2.. x_ 3.. x_ i. . x_ k.. x_ ...

Residual S.S.                          (6.7)= − •∑∑∑ ( )x xijk ij
kji

2
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Another very general S. S. is the Total sum of squares, calculated from
the individual observations as before:

with x_ ... the overall mean.

The third general S. S. is the Treatment Sum of Squares, calculated from
the cell means

If any of the treatments are effective, the treatments mean square will be
inflated. Of course, we want to be able to break this overall S.S. down into row
and column S. S. . As  before, we do this with row and column means:

The two-way analysis with replication contains a new S. S., the interaction
Sum of Squares. This is often calculated as Treatment S. S. - Row S. S. - Column
S. S. but a direct calculation from the means is

The Total S.S. breaks down into Treatments and Error, and the Treatments S.S.
contains Rows, Columns and Interaction S.S. Textbooks usually show the ANOVA
table in this form, but EXCEL ignores Treatments, producing only Total, Rows
(labelled Samples for unknown reasons), Columns, and Interaction.

In the final ANOVA, the F-test of significance of the interaction mean
square (MSInter/ M SError) is very important in deciding what can be said about
the main effects. This is because a significant interaction mean square
suggests that the row and column main effects are somehow correlated, i.e.,
they "interact". If this is the case, then one cannot discuss the two sets of main
effects (row and column) separately, making interpretation of the experiment
much more difficult.

Note the similarity of the equation for Interaction S. S. to  that for the
Residuals (error) S. S. for the 2-way ANOVA without replication. This suggests
that the error term in that case is really an interaction term, making it
evident that we need to have replications to assess interaction (there is a test,
Tukey's test, for a particular form of interaction in a 2-way ANOVA based on
one observation per cell. It appears in many statistics texts (e.g., Snedecor and
Cochran , Statistical Methods, Iowa State University Press, Ames, Iowa, 6th
Edition, 1967).
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The pheasant count data of Table 1 were not replicated in a strict sense,
which would require repeated counts at the same station by the same
observers. One of the reasons this is not done is that calling activity drops off
quite sharply after the early morning hours. It is also obvious from Table 1
that there is a gradient over distance. High counts are obtained in the best
pheasant habitat, and this route apparently went into marginal habitat beyond
Station 10. Inasmuch as the stations are reasonably close together (usually 1
mile apart to keep from counting the same calling individuals a second time),
it isn't too much of a stretch of technique to regard adjacent stations as
"replicates". To do this, we drop the counts on Station 19, and use successive
pairs as replicates (thus counts on Stations 1 and 2 are called replicates, while
Stations 3 & 4 are also replicates, etc., giving r = 9, while k= 6 for rkm= 9(6)2 =
108). The analysis of variance table is as follows.

Table 6.3 Analysis of variance of Pheasant count data with m=2.  

Source SS           df MS               F
Rows 11189.91 8 1398.74 52.24
Columns 568.41 5 113.68 4.25
I n t e r a c t i o n 605.76 40 15.14             0.57
W i t h i n 1446.00 54 26.78

Total            13810.07
 
6.5 Assumptions for the analysis of variance

The discussion thus far has focussed on the mechanics of the analysis of
variance, being mainly concerned with developing Sums of Squares for 3
models: (1) one-way ANOVA, (2) 2-way ANOVA without replication (and the
special case of randomized blocks designs), and (3) two-way ANOVA with
replication. The ANOVA tables present the S. S., their associated Mean Squares,
and the ratios of Mean-Squares (F-ratios). As previously noted, the tests of
significance (F-tests) depend on the assumptions underlying ANOVA, but the
underlying framework - the Sums of Squares, along with the Mean Squares
and F-ratios, can be calculated for any set of numbers. No assumptions are
required. We thus have a mechanical analysis that says something about
variability introduced by treatments, without assumptions about the
underlying data.

To consider the assumptions required for tests of significance, we write
a model for the observations for a 2-way ANOVA with replications:

                              xij  = µ + αi  + βj  + γij  + εij                                         (6.13)

Here, µ  represents an overall mean value, α i  and β j  are the main effects
(column and row effects), γi j  represents the interaction between the two main
effects, and ε i j  is the error term. This latter term (ε i j ) is assumed to have an
"expected value" of zero. That is, when it is averaged over a large data set it
should equal zero. Usually it is assumed that Σα i  = 0 and Σβj = 0. We thus have the
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x ij  made up of an overall mean value (µ ) plus an effect for its row (α i ) and its
column (β j ). As we noted earlier, an "interaction" is an effect that makes
adjacent observations tend to be correlated. When there are no interactions
(γi j  = 0) then the expected value of xij  (effectively xij  averaged over very large
samples) can be written as E(xij ) = µ + αi+ β j  and we say that the model is
additive. Such analyses are far easier to understand and interpret than are
those where interactions are present  (γi j  not equal to zero).

It is important to recall that we want to test several hypotheses that state that
the main effects and interaction are zero, and the assumptions become
important in assuring validity of the F-tests.

Assuming additivity, we can use the reduced model:

       xij  =  µ + αi  + βj  + ε ij                                                   (6.14)

Two major assumptions underlying tests of significance in ANOVA are:

(1) the ε i j  are independent, i.e., uncorrelated.

(2) the ε ij are from a normal distribution with mean zero and variance σ 2.
The normal distribution is a symmetrical, bell-shaped curve, with its "spread"
(variance) measured by σ2 [Eq.(1.3)].

Consider a two-way ANOVA with many replications per cell (and no
interactions). The mean value in any cell should be approximately

                     x
_
 ij . = 

 
µ + αi  + βj

and the xi jk  in this cell should have the same variance, σ2. Any two cells

should have the same variance, σ2. This is often described as homoscedasticity,
which simply means equal variances.

The assumptions for ANOVA can be listed as:

(1) additivity (γij  = 0).
(2) independence of the ε i j

(3) ε ij normally distributed with mean zero and variance σ 2.

Sometimes (3) is split into 2 assumptions:
(3) ε ij normally distributed with mean zero

(4) homoscedasticity - variances in replicates are all equal to σ 2.

In most applications of ANOVA there simply are not enough replicates
within cells to test these assumptions. Given quite large samples in the cells
(say 20-30 replicates per cell) it is worth comparing variances. Testing for
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normality takes larger samples. Some authors recommend Bartlett's test, but
Scheffe (The Analysis of Variance, J. Wiley and Sons, 1959, p. 83) points out
that it "is extremely sensitive to nonnormality", and recommends that a
preliminary test of homogeneity of variances not be made.

Ecological data often come as counts of some kind, and these tend not to
be normally distributed, often having a skewed frequency distribution -- a
long "tail" of less frequent observations on one side or the other of the bulk of
the observations. Such data can be brought into closer approximation to
normality by a transformation. Two of the most commonly used
transformations are the square root transformation (xij )0 .5, and the
logarthmic transformation, loge(x ij ). It often turns out that standard
deviations of ecological data tend to be proportional to the mean values

(coefficient of variation, s/x
_

  = approximately a constant). The logarithmic
transformation tends to "normalize" such data and to make variances more
nearly equal on the transformed (i.e., logarithmic scale).

Testing the need for or the effects of a transformation is often
recommended, but it is risky to let such tests govern a decision to use or not use
a transformation.

It is worthwhile to simulate data based on the assumptions for ANOVA.
We start with Eq.(6.14); no interactions, and produce a table of main effects
(using α i  and β j  such that they sum to zero) to which we add µ  (taken as 5
here). A table of random normal deviates can be produced using EXCEL (used
here as N(0,1), i.e. normal with zero mean and unit variance). These are added
to the main effects table giving a set of simulated data (3 replicates per cell
were used; they have the same main effect value, but different random draws
were used to add ε ij ). The table of data follows, along with the ANOVA table.

1 2 3 4
1 6.10 5.89 4.98 5.67

7.18 4.80 5.51 5.70
DATA 5.73 6.71 4.89 6.80
FOR 2 6.33 6.17 6.75 2.91
ANOVA 6.48 5.89 2.54 4.13

6.77 4.42 5.56 5.23
3 6.57 5.36 5.93 3.71

6.93 4.93 3.08 4.80
5.68 5.42 2.81 5.31

4 6.49 4.14 5.80 2.65
3.39 4.74 5.26 5.82
4.49 6.39 4.74 3.89

5 4.18 5.97 5.14 2.61
6.55 5.18 4.46 3.11
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4.10 3.99 3.93 3.57
6 5.69 4.40 4.20 4.25

4.15 3.63 4.18 4.78
3.97 2.88 3.75 4.49

Source SS d f MS F P-va lue F crit
Sample 21.20 5.00 4.24 4.08 0.00 2.41
Columns 14.67 3.00 4.89 4.71 0.01 2.80
I n t e r a c t i o n 18.29 15.00 1.22 1.17 0.32 1.88
W i t h i n 49.86 48 1.04

Total 104.02  71

We can repeat the above exercise with interactions. In this case, the γi j
were taken as a fractional power of the product denoting row and column
positions of a main effect entry, γi j  = (xy)0.7. Again a random normal deviate is
added to give eq. (6.13). The table of "data" and ANOVA table follow.   

1 2 3 4
1 7.10 7.51 7.14 8.30

DATA 8.18 6.42 7.67 8.34
FOR 6.73 8.33 7.05 9.43
ANOVA 2 7.96 8.81 10.25 7.20

8.10 8.53 6.04 8.42
8.40 7.06 9.07 9.51

3 8.73 8.87 10.59 9.40
9.09 8.44 7.73 10.50
7.84 8.93 7.47 11.00

4 9.13 8.43 11.49 9.62
6.03 9.03 10.96 12.79
7.13 10.67 10.44 10.85

5 7.27 10.98 11.79 10.75
9.63 10.19 11.12 11.25
7.19 9.00 10.58 11.71

6 9.19 10.09 11.77 13.50
7.65 9.33 11.75 14.03
7.47 8.57 11.31 13.74

Source of
Variation

SS df MS F P-value

Sample 78.15 5 15.63 15.05 0.0000
Columns 69.00 3 23.00 22.14 0.0000
Interaction 44.39 1 5 2.96 2.85 0.0030
Within 49.86 4 8 1.04

Total 241.40 7 1

As noted previously, some authors recommend testing the deviations
(given in Eq.(6.12)) for normality. With the numbers of replicates usually
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available, this is not sensible advice. A plot (Fig. 6.4) of all 72 normal deviates
used in the simulations was generated from a normal distribution, but is not
too reassuring in terms of the assumption of normally distributed errors.
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Fig. 6.4. Frequency distribution of 72 deviations from data used in simulations.

6.6 Comparisons in ANOVA

In a brief account like the present one, it is not possible to cover more
than a fraction of the features of the Analysis of Variance. The book by
Scheffe is a classic account, and should be examined for more details. It is,
however, couched in the language of matrix algebra. Another good account is
that of Snedecor and Cochran, Statistical Methods, the Iowa State University
Press, Ames, Iowa. It has gone through at least 8 editions, and is another classic
text. Important topics that we have not covered are those of comparisons or
contrasts. In most experimental work, the main interest will be in certain
comparisons (e.g. Exercise 6.12 on weight gains in rats). In the pheasant data
there were 2 observers with experience, so a comparison between experienced
and inexperienced observers is of considerable importance. The pocket-
gopher data (Exercise 6.5) was collected at different locations and over
different years. One would thus emphasize those comparisons. In Exercise 6.8
there is a "control" plot ("check" treatment) which would normally be
compared with all other plots. Snedecor and Cochran give good descriptions of
how to sort out such contrasts. A short account of two approaches follows.

When comparisons are planned in advance, a t-test can be used to test
these specific comparisons for significance. The test depends on computing a
linear combination of the observed means:

             L = λ1x-  1 + λ2x-  2 +   ...  +   λkx-  k
                                         (6.15)
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with the  λ i  constants adding to zero, i.e. Σ  λ i  = 0. The standard error of L is
estimated as:

The d.f. for the estimated standard error of L are those used to estimate s, and n

is the number of observations used to compute each mean, x-  i . Scheffe
describes comparisons such as L as contrasts. The t-test for comparisons
planned in advance is:

t = 
L

 sL
                                                           (6.17)

The  λ i are dictated by the comparison desired. If, for example, 2 means, say x-  1,

and x-  3, are compared to a third one, x-  2 then   L = 
x- 1
2    +  

x- 3
2    - x

-
 2 with the λ i

being 1/2,1/2 and -1, and thus adding to zero. If there are additional means in
the overall analysis that are not to be involved in the comparison, then the λ i
for those means are assumed to be equal to zero. The simplest comparison is

that for 2 means, with the comparison being  x-  1 -  x
-  2, so that λ1 = 1 and λ2 = -1,

a n d
sL  = 21/2s/n1/2 so that:

t = 
n1 /2(  x- 1  -   x- 2 )

21/2s
 

with n being the number in each group and s is obtained from the error M.S.

A test due to Scheffe provides a general method for finding significant
differences among a  full set of means without designating these comparisons
in advance of conducting the experiment. The price paid is less sensitivity
(broader confidence limits). It uses the same set-up as above, but declares L/sL

significant only if it exceeds [(k-1)F05] 1/2 where F05 is the 5% level of the F-
distribution for k-1 and n-k degrees of freedom when we are considering a
one-way analysis. The test can be used in more complex ANOVAs using (k-1)
and the d.f. associated with the error mean square. Scheffe's test also reduces
to the t-test when k = 2. The test should not be used if the F-test in an ANOVA is
not significant, as there are then no significant contrasts in the data. It is
important to understand that the S-method can be used to check all significant
contrasts in the means, while preserving the chosen α  level.

We illustrate the two procedures by using data simulated as in Section
6.5  where the simulations were used to study the assumptions for ANOVA. In
this example the column main effects have been changed. The "data" are as
follows:

S E L s
s

nL i. .( ) = = Σλ2                                     (6.16)
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1 2 3 4
1 5.90 5.39 5.48 5.87

6.98 4.30 6.01 5.90
5.53 6.21 5.39 7.00

2 6.13 5.67 7.25 3.11
6.28 5.39 3.04 4.33
6.57 3.92 6.06 5.43

3 6.37 4.86 6.43 3.91
6.73 4.43 3.58 5.00
5.48 4.92 3.31 5.51

4 6.29 3.64 6.30 2.85
3.19 4.24 5.76 6.02
4.29 5.89 5.24 4.09

5 3.98 5.47 5.64 2.81
6.35 4.68 4.96 3.31
3.90 3.49 4.43 3.77

6 5.49 3.90 4.70 4.45
3.95 3.13 4.68 4.98
3.77 2.38 4.25 4.69

Means 5.3995 4.5498 5.1398 4.6118

The ANOVA (two-way with replications) is:
Source SS df MS F P-value

Sample 21.1987 5 4.2397 4.0818 0.0036
Columns 9.1840 3 3.0613 2.9473 0.0421
Interaction 18.2903 1 5 1.2194 1.1739 0.3233
Within 49.8576 4 8 1.0387

Total 98 .5306 7 1

If we suppose the planned comparison was between means 1 and 3 against
means 2 and 4, then:

L = 0.25(5.3995) -0.25(4.5498) + 0.25(5.1398) - 0.25(4.6118) = 0.3444

and:    sL  = (Σ λ i2)1/2 
s

n 1 / 2
   = 0.5[(1.0387)/(18)]1/2 = 0.122

then:   t = 
L

 sL
    = 

0.3444
0.122  = 2.82 with 48 d.f.

From t-tables (α  = 0.05) we have 0.005 <P <0.010. EXCEL has a function that will
compute the probability directly. Enter the statement = TDIST(t,d.f.,tails) where
t is the calculated value (2.82 here), d.f. are 48, and "tails" is 2 for a 2-tailed test.
This function yields P = 0.007. Quite possibly past experience would lead to a
one-tailed test for a planned comparison.

We can illustrate Scheffe's S-method for the same comparison. The t-
value remains the same (2.82) but we use:
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[(k-1)F05]1/2 = [3(2.80]1/2 = 2.90
as the criterion for significance at the 5% level, where 2.80 is the tabulated F-
value at α  = 0.05 with 3 and 48 d.f. Hence, the test is close to the 5% level of
significance. We can go on and look for other significant contrasts as
suggested by the data while still having α = 0.05. This is definitely not the case
for the first comparison tested above, which has to be selected in advance of
the study. Because it is a general-purpose "data-snooping" tool, Scheffe (1959)
suggested his test might be used with α  = 0.10, rather than the usual 0.05. EXCEL
can be used to find the tabular F-value by using the function FINV(P, d.f.1,
d.f.2) where P = 0.05 here and, d.f.1 = 3, and d.f.2 = 48. This function gives F05  =
2.798, and F10 = 2.201.

6.7 Type I and II errors and "power"

Most ecologists are used to the notion of Type I error, routinely
conducting statistical tests, such as the t-test, at the 5% level of significance (α
= 0.05). They understand that such tests give a 0.05 probability, over the long
run of many such tests, of erroneously claiming that the null hypothesis of
"no effect" can be rejected when it is in fact true. Many do not seem to realize
that there is another side to the issue, which is failing to find a significant
difference when it exists (possibly because there were not enough samples or
replications to detect an important difference. This is known as a type II error.

This issue of type II error can be discussed in terms of the "sensitivity"
of a study, i.e., how small a change or difference will a study of a given size
reliably detect? The statistician's answer is usually couched in terms of a
power function or the "power of a test". Consider the likely points of view as to
the impact on the environment of some new facility. There are usually two
sides, those who construct and operate the facility and those with
environmental regulatory authority. Suppose that both sides can agree on a
study method that has well-known statistical properties and can be applied in
the circumstances under consideration. Suppose that they further agree to
make certain modifications in the facility and/or operational procedures if a
field survey shows a specified degree of change has taken place (an "impact").
What remains is to decide how large a sample should be taken in the field
study. But that depends on the amount of protection each party requires
against errors damaging to their best interests.

These can be described as follows: (1) The people doing the construction and
operation would rather not have the survey results indicate a significant
change when the agreed-on degree of change really did not take place (Type I
error). Just how strongly they voice objections will depend on the
consequences of a determination of "change". If only minor modifications are
then necessary they perhaps will agree that a 10% rate (α  = 0.10) of such "false
positive" results is acceptable. However, if the changes require costly
retrofitting and expensive operational modifications, they may well want to
try to insist on Type I error rates of 1% or maybe even less.

(2) On the other side, the staff of the regulatory agency would not like to fail to
recognize a significant impact when one does occur (Type II error). If small
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samples are taken, the results almost always will come out not significantly
different. Hence the regulators may be guided by rules that require an 80%
chance of being sure to detect a real difference (of the magnitude agreed on)
when the impact is not of minor environmental consequence. But if very
substantial damage to an important resource may be involved, they may well
argue for a 99% assurance. All too often, by default or lack of understanding
the actual rate may be about 50%, much like settling the issue by flipping a
coin and doing no field work.

To make any progress in the ensuing arguments a way of estimating
sample sizes is needed. An easy solution is just to take a very large sample.
Usually that is either too expensive or impractical (it may also result in
environmental damage from the sampling process). A handy formula for
approximating sample size for given Type I and II errors is given by Snedecor
and Cochran and in the useful book by Cochran (Planning and Analysis of
Observational Studies, W. G. Cochran 1983, J. Wiley and Sons). It can be written
as:

where zα  = normal deviate for Type I error, zβ = normal deviate for Type II

error, σ2 = variance (assumed the same in both data sets being compared), and
δ = true (unknown) difference between two population means (µ 1 - µ 2) or two
areas being studied, and n = the desired sample size for each population or area
(thus 2n required). zα  is the familiar value used in confidence limits, i.e.,
z05 = 1.96,  z10 = 1.64. Some values of zβ are:

Type II        Power
error (  β              )     (1 -   β          )       z  β   
0.20 0.80 0.84
0.10 0.90 1.28
0.05 0.95 1.64
0.01 0.99 2.33

A major problem is that σ  is always unknown, and must be either guessed at or
estimated from a preliminary survey (etc.). Thus the right-hand side of eq.
(6.18) is frequently used, i.e., one guesses at the ratio of the difference to be
detected to σ. Suppose we take zα  = 1.96 and zβ = 1.28 (power = 0.90). Then

n = 
2(1.96 + 1.28)2

{
δ
σ} 2

   = 21

{
δ
σ} 2

 

Consequently, if we suppose that the true difference is one-half of σ , n = 84,
while n = 21 if we assume σ  = δ. Clearly, if we assume a small difference is to be
detected, the sample size required may be huge. Using a small sample without

n
z z z z

=
+

=
+2 22 2

2

2

2

( ) ( )

{ }

α β α βσ
δ δ

σ

                                   (6.18)
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looking at power of the test amounts to operating in ignorance (but still
happens a lot).

6.8 Other aspects of ANOVA

We did not go beyond two-way tables with replications. Efficient designs
will use more factors in order to get the most information per dollar spent on
experimentation. Again Snedecor and Cochran provide good discussions. There
are text-books devoted entirely to the design and analysis of experiments, and
a bewildering array of prospects. We also did not investigate what are called
unbalanced analyses. These are typically two-way analyses with replications
where the same number of replications per cell is not present. Sometimes a
study is planned with m replicates per cell but some are destroyed or, in the
case of experiments with animals, die unexpectedly, etc. In other cases, it may
not be possible to get m replicates per cell. Analyses of unbalanced designs can
be complex and, in some cases, controversial. It may be noted that the pocket-
gopher example is unbalanced, but this is not a problem in one-way analyses.

The models described here are fixed-effects models, where interest is
solely in the set of main effects studied in the experiment. Very often we have
to consider random-effects models where the effect studied is regarded as a
sample from some large population of effects. The analysis then takes a
different form. Probably most practical work can be described by mixed-
effects models, where one set of factors is fixed and the remainder random. The
great advantage of the fixed-effects model is that the analysis of variance is
quite "robust" in such cases, i.e., non-normality is not as serious a concern as
in the random-effects models, where we assume sampling from a random
normal distribution, and depend much more on that assumption for tests of
significance. We remarked that significant interactions pose problems of
interpretation, but did not note that it the may be necessary to use the
interaction term as the denominator of F-tests.

The prominence of ANOVA in ecological studies is a bit puzzling. A quick
review of a major ecological journal a few years back showed that ANOVA was
then the dominant statistical technique used in that publication. However, I
suspect that many of the cases really stem from editorial and reviewer
insistence on statistical testing. The mere fact that some “significant” result
was obtained doesn’t really provide much information about the process being
studied. Hence I suggest that students use the data-snooping quality of the test
due to Scheffe (Section 6.6) whenever possible as a tool for searching out the
particular comparisons  that really are significant in an analysis. As noted
there, Scheffe proposed using a 10% significance level with the test, but that
may not be very palatable to editors (who often will not realize that it is up to
the investigator to choose the significance level, not an editor or a referee).
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6.7 Exercises

6.1 Show that the cross-product terms in eq. (6.3) cancel out, resulting in
eq.(6.4).

6.2 Calculate a one-way analysis of variance for the pheasant data using the
ANOVA program in EXCEL.

6.3 Using the group variances printed out in the EXCEL output for Exer. 6.2,
calculate a value for Eq. (6.5) and locate the corresponding value in the one-
way ANOVA table prepared in Exer. 6.2 (the calculations can be inserted to the
right of the summary of means and variances in the one-way output tables).

6.4 Copy the data from Exer. 6.2 to a new spreadsheet in the same Workbook and
calculate the S. S. for the one-way ANOVA directly from the definitions given
in eq. (6.4).

6.5 Repeat the calculations for Exer. 6.2 and 6.4 on the pocket gopher data
given below, but first convert the counts to natural logarithms [natural log =
LN(number ) ] .

Pocket gopher counts
       Black Mesa Grand Mesa

1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 3 1 9 6 4
1 6 1 2 3 7 8 2 1 6 7 6 2
2 6 1 2 7 1 6 8 1 8 3 1 7 2
3 1 3 2 2 5 3 1 6 8 2 9 7 1 0 6
4 1 5 8 1 5 7 1 9 0 1 8 8 8 7
5 9 0 2 4 4 3 3 2 3 8 8 9
6 5 2 1 8 0 5 7 2 8 5 8 1
7 1 0 7 2 6 9 3 0 1 2 4 2 9
8 7 3 1 3 8 2 5 2 0 9 7 5
9 1 5 5 1 5 9 5 0 2 4 8 6 5

1 0 7 7 2 3 7 1 3 1 2 0 4 4 6
1 1 8 2 1 0 8
1 2 9 7
1 3 1 6 7

6.6 Run the two-way ANOVA without replications on the pheasant data. Notice
that the total sum of squares remains the same as the one-way analysis, and
the between-groups S. S. is the same as that for columns in the new analysis.
However, the F-tests are now significant, and it is worth considering why this
should happen (look at the mean square for error, and compare it with the
within-groups value of the one-way analysis. What is your explanation?
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6.7 Calculate the S. S. for Exer. 6.6 directly.

6.8 Randomized blocks The data below are from a randomized block study
reported by Snedecor and Cochran (Statistical Methods, 6th Ed., p. 300). Do a
two-way analysis in EXCEL and compare the M. S. for replication with that for
treatments. What do the F-tests suggest?

Replicates
Treatments 1 2 3 4 5
CHECK 8 1 0 1 2 1 3 1 1
ARASAN 2 6 7 1 1 5
SPERGON 4 1 0 9 8 1 0
SEMESAN 3 5 9 1 0 6
FERMATE 9 7 5 5 3

6.9 Calculate the ANOVA table for Exer. 6.8 directly. It shouldn't take long, and
is first-rate practice in using EXCEL.

6.10 Calculate ANOVA  for the pheasant data arranged as having 2 replicates as
described in the text section on 2-way ANOVA.

6.11 Copy the data from Exer. 6.10 to a new spreadsheet in EXCEL and calculate
the S. S. directly from the definitions of eq. (6.8) thru eq.(6.12). This is
something of a chore, with the main difficulty being in keeping things
straight (use good labelling). Use two spreadsheets. You will need 2 copies of
the original counts (one for computing Total S.S., the other for computing
error S. S.) and 2 copies of the cell means (to calculate Treatment and
Interaction S. S.). If you label things carefully and use the proper multipliers
(m, k, and r) you will get the same S. S. as in Exer. 6.10. Patience is necessary,
as is accuracy. If you do all of the exercises, it should help in remembering
how to use ANOVA.

6.12 Snedecor and Cochran (1967:p. 347) give the following data on gains in
weight (grams) of rats fed on six diets. The columns are replicates (individual
rats on the same treatment). Run an ANOVA and report the results. Note that a
two-way ANOVA with replications is indicated.

                  High level                     Low level
Beef Cereal Pork Beef Cereal Pork

1 7 3 9 8 9 4 9 0 1 0 7 4 9
2 1 0 2 7 4 7 9 7 6 9 5 8 2
3 1 1 8 5 6 9 6 9 0 9 7 7 3
4 1 0 4 1 1 1 9 8 6 4 8 0 8 6
5 8 1 9 5 1 0 2 8 6 9 8 8 1
6 1 0 7 8 8 1 0 2 5 1 7 4 9 7
7 1 0 0 8 2 1 0 8 7 2 7 4 1 0 6
8 8 7 7 7 9 1 9 0 6 7 7 0
9 1 1 7 8 6 1 2 0 9 5 8 9 6 1

1 0 1 1 1 9 2 1 0 5 7 8 5 8 8 2
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6.13 Use the planned comparison method on the data of Exer. 6.12 to compare
the 2 levels of protein (High and Low). You may also want to look at the
breakdown given by Snedecor and Cochran for this example, as it uses
orthogonal comparisons to break down the treatment S.S. into 5 individual
comparisons. Apply Scheffe's S-method to the data. Discuss results.

6.14 Use the planned comparison method to compare the "check" (control)
mean with the other treatment means of the data in Exer. 6.8. Make the same
comparison with Scheffe's method. List his criterion for α  =0.10 as well as for α
=0.05. Discuss results.


